Quasi-periodic motions in dynamical systems. Review of a renormalisation group approach
نویسنده
چکیده
Power series expansions naturally arise whenever solutions of ordinary differential equations are studied in the regime of perturbation theory. In the case of quasi-periodic solutions the issue of convergence of the series is plagued of the so-called small divisor problem. In this paper we review a method recently introduced to deal with such a problem, based on renormalisation group ideas and multiscale techniques. Applications to both quasi-integrable Hamiltonian systems (KAM theory) and non-Hamiltonian dissipative systems are discussed. The method is also suited to situations in which the perturbation series diverges and a resummation procedure can be envisaged, leading to a solution which is not analytic in the perturbation parameter: we consider explicitly examples of solutions which are only C∞ in the perturbation parameter, or even defined on a Cantor set.
منابع مشابه
Dynamical Behavior of a Rigid Body with One Fixed Point (Gyroscope). Basic Concepts and Results. Open Problems: a Review
The study of the dynamic behavior of a rigid body with one fixed point (gyroscope) has a long history. A number of famous mathematicians and mechanical engineers have devoted enormous time and effort to clarify the role of dynamic effects on its movement (behavior) – stable, periodic, quasi-periodic or chaotic. The main objectives of this review are: 1) to outline the characteristic features of...
متن کاملNonlinear Dynamics of the Rotational Slender Axially Moving String with Simply Supported Conditions
In this research, dynamic analysis of the rotational slender axially moving string is investigated. String assumed as Euler Bernoulli beam. The axial motion of the string, gyroscopic force and mass eccentricity were considered in the study. Equations of motion are derived using Hamilton’s principle, resulting in two partial differential equations for the transverse motions. The equations are ch...
متن کاملLI-YORKE CHAOTIC GENERALIZED SHIFT DYNAMICAL SYSTEMS
In this text we prove that in generalized shift dynamical system $(X^Gamma,sigma_varphi)$ for finite discrete $X$ with at least two elements, infinite countable set $Gamma$ and arbitrary map $varphi:GammatoGamma$, the following statements are equivalent: - the dynamical system $(X^Gamma,sigma_varphi)$ is Li-Yorke chaotic; - the dynamical system $(X^Gamma,sigma_varphi)$ has an scr...
متن کاملOn Analytical Routes to Chaos in Nonlinear Systems
In this paper, the analytical methods for approximate solutions of periodic motions to chaos in nonlinear dynamical systems are reviewed. Briefly discussed are the traditional analytical methods including the Lagrange stand form, perturbation methods, and method of averaging. A brief literature survey of approximate methods in application is completed, and the weakness of current existing appro...
متن کاملKam Theory: the Legacy of Kolmogorov’s 1954 Paper
Kolmogorov-Arnold-Moser (or kam) theory was developed for conservative dynamical systems that are nearly integrable. Integrable systems in their phase space usually contain lots of invariant tori, and kam theory establishes persistence results for such tori, which carry quasi-periodic motions. We sketch this theory, which begins with Kolmogorov’s pioneering work.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009